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Abstract. For a finite-dimensional algebra A, we define k(A) to be the codimension of
the commutator subspace K(A) and characterize algebras with small k(A) up to Morita
equivalence. This is achieved by extending Okuyama’s refinement of Brandt’s theorem
to this setting. To this end, we study the codimension of the sum of the commutator
subspace K(A) and nth Jacobson radical Radn(A). We prove that this is Morita invariant
and give an upper bound for the codimension as well. This is a report of a talk based
on Koshitani and Sakurai [arXiv:1803.00025v2 (2018) 9pp.].
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1. Introduction

“For every positive integer n, there are only finitely many isomorphism classes of finite
groups with n conjugacy classes.”

This is a theorem due to E. Landau. Therefore structure of a finite group G can be
studied by the number of conjugacy classes k(G), as it can be studied by its order |G|.
Let us see some small examples:

k(G) = 1 ⇐⇒ G ∼= 1,

k(G) = 2 ⇐⇒ G ∼= Z/2Z,
k(G) = 3 ⇐⇒ G ∼= Z/3Z,S3.

(1.1)

According to a fundamental theorem in representation theory of finite groups, the set
of conjugacy classes of a finite group G bijectively correspond to the set of irreducible
characters Irr(G) of G. (Namely, k(G) = |Irr(G)|.) Therefore, for every positive integer
n, there are only finitely many isomorphism classes of finite groups with n irreducible
characters. By the way, if a prime number p is provided, Irr(G) is partitioned into so-
called p-blocks. Furthermore, some representation-theoretic properties are also naturally
partitioned according to blocks and it is expected that something similar also holds for
blocks.

This report is organized as follows. In the first section, character-theoretic background is
presented. Analogous results for block algebras and some preceding studies are presented
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in the next section. In the last section, we present results generalized to arbitrary finite-
dimensional algebras. These are obtained as corollaries of an extension of a result by
Okuyama [8].

2. Character theory

Let us introduce a partition of irreducible characters into p-blocks.

Definition 1 ([7, pp. 62–63]). For a finite group G and a prime number p, let us define an
undirected graph with the vertex set Irr(G) and two vertices χ, ψ ∈ Irr(G) are adjacent if

1

|G|
∑
g∈G
p - |g|

χ(g)ψ(g) 6= 0.

Then the partition of Irr(G) into its connected components is written as

(2.1) Irr(G) =
∐

B∈Blp(G)

Irr(B).

This is called the partition of Irr(G) into p-blocks. The block B0 ∈ Blp(G) containing the
trivial character 1G is called the principal block. Define k(B) = |Irr(B)| for B ∈ Blp(G).

There is another way to measure how complex Irr(B) is other than k(B), called a defect.

Definition 2 (defect). Let νp be the p-adic valuation. Define d(χ) = νp(|G|/χ(1)) for a
character χ ∈ Irr(G) and define d(B) = maxχ∈Irr(B) d(χ) for a block B ∈ Blp(G). These
are called the p-defect of χ and B, respectively.

For example, the order of Sylow p-subgroup P ∈ Sylp(G) can be given using the p-defect

of the principal block B0 ∈ Blp(G) by |P | = pd(B0). The analogous results of (1.1) for
blocks are the followings.

Theorem 3 (Brauer-Nesbitt [2], Blocks of Defect Zero).

k(B) = 1 ⇐⇒ pd(B) = 1.

Theorem 4 (Brandt [1]).

k(B) = 2 ⇐⇒ pd(B) = 2.

It is expected that similar result holds for k(B) = 3, but unfortunately it is still open.

Conjecture 5 (cf. Brandt [1]).

k(B) = 3
?⇐⇒ pd(B) = 3.

More generally, it is conjectured that k(B) does not exceed pd(B). This is a famous
open problem which has been known since more than half a century ago.

Conjecture 6 (k(B)-Conjecture).

k(B)
?

≤ pd(B).



3. Block algebras

In this section, we assign an algebra to a block B ∈ Blp(G). We present how structure
of such algebras are restricted if k(B) are small.

Definition 7 (Osima idempotent). Define eχ = χ(1)
|G|

∑
g∈G χ(g)g for a character χ ∈

Irr(G). This is a centrally primitive idempotent of the group algebra CG. Define

fB =
∑

χ∈Irr(B)

eχ

for a block B ∈ Blp(G). This is called the Osima idempotent.

Let F be the algebraic closure of the prime field Fp of characteristic p > 0. We can
obtain a centrally primitive idempotent eB of the group algebra FG by ‘reduction modulo
p’ of the Osima idempotent fB. (See [7, Chapters 2–3] for details.) This is called the
block idempotent of B.

Definition 8 (block algebra). For a block idempotent eB ∈ FG, the algebra eBFG is
called a block algebra.

Let modA denote the category of finitely generated right A-modules for a finite-
dimensional algebra A. The following propositions are basic ones.

Proposition 9.
dimZ(eBFG) = k(B).

Theorem 10 (cf. Theorems 3, 4).

k(B) = 1 ⇐⇒ mod eBFG ' modF,

k(B) = 2 ⇐⇒ mod eBFG ' modF [X]/(X2).

Okuyama [8] obtained the following theorem by refining a theorem of Brandt [1].

Definition 11. Define Socn(A) = {x ∈ A | xRadn(A) = 0 } for a finite-dimensional
algebra A. This is called socle series of A. Set ZSn(A) = Z(A) ∩ Socn(A).

Theorem 12 (Okuyama [8]). Let {Si | 1 ≤ i ≤ `(B) } be a complete set of representatives
of simple eBFG-modules. Then

dimZS2(eBFG) = `(B) +

`(B)∑
i=1

dim Ext1eBFG(Si, Si).

Recently Otokita [9] extended this result as follows.

Theorem 13 (Otokita [9]). Let { ei | 1 ≤ i ≤ `(B) } be a basic set of primitive idempotents
of eBFG. Then

dimZSn(eBFG) ≤
`(B)∑
i=1

dim ei(eBFG)ei/ei Radn(eBFG)ei

for every n ≥ 1.

In the last section, we present generalizations of these theorems.



4. Results

In the following, most parts go well for fields other than the algebraically closed field
F as long as it is large enough (i.e., splitting field) and even positive characteristic is not
necessary. For brevity, however, we content ourselves with the field F .

Definition 14 (commutator subspace). For a finite-dimensional algebra A over the field
F , define

K(A) =
∑
x,y∈A

F (xy − yx).

This is called the commutator subspace ofA and define k(A) = codimK(A) = dimA/K(A).
Set KRn(A) = K(A) + Radn(A).

Remark 15. Since dimZ(eBFG) = codimK(eBFG) holds for a block algebra eBFG, we
have k(B) = k(eBFG). Hence our choice of notation is consistent.

Remark 16. The vector space A/K(A) has many different names. It is called trace group
T (A), trace space A/[A,A], zeroth Hochschild homology HH0(A) or zeroth cyclic homol-
ogy HC0(A) of A in [4, 5, 11].

Theorem 17 (Koshitani-Sakurai [6]). For every n ≥ 1, codimKRn(A) is a Morita
invariant for a finite-dimensional algebra A.

Taking Remark 15 into account, one can extend Theorems 13 and 12 as follows.

Theorem 18 (Koshitani-Sakurai [6]). Let { ei | 1 ≤ i ≤ `(A) } be a basic set of primitive
idempotents of a finite-dimensional algebra A. Then

codimKRn(A) ≤
`(A)∑
i=1

dim eiAei/ei Radn(A)ei

for every n ≥ 1.

Theorem 19 (Koshitani-Sakurai [6], Shimizu [10]). Let {Si | 1 ≤ i ≤ `(A) } be a complete
set of representatives of simple A-modules. Then

codimKR2(A) = `(A) +

`(A)∑
i=1

dim Ext1A(Si, Si).

Remark 20. It is known that codimKR1(A) = `(A).

As corollaries of Theorems 18 and 19, we have the following.

Theorem 21 (Koshitani-Sakurai [6]). Let CA be the Cartan matrix of a finite-dimensional
algebra A. Then

`(A) +

`(A)∑
i=1

dim Ext1A(Si, Si) ≤ k(A) ≤ trCA.

Theorem 22 (Koshitani-Sakurai [6], Chlebowitz [3]).

k(A) = 1 ⇐⇒ modA ' modF,

k(A) = 2 and `(A) = 1 ⇐⇒ modA ' modF [X]/(X2).



Remark 23. Theorem 19 is obtained independently from Shimizu [10]. His proof in [10]
is, as far as we understand, done by reducing the proposition to a proposition for pointed
dual coalgebras and using the Taft-Wilson theorem. It is different from how we proved in
[6]. Theorem 22 and several further cases were already studied by Chlebowitz [3]. See [6]
for details. (Truncated polynomial algebras F [X]/(Xn) are also characterized in a similar
fashion there.)

Remark 24. Let Q be a finite acyclic quiver and I an admissible ideal of the path algebra
FQ. From Theorem 21, it can shown that k(FQ/I) = `(FQ/I).
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[3] M. Chlebowitz, Über Abschätzungen von Algebreninvarianten (German), PhD Thesis, Universität
Augsburg, 1991.

[4] P. M. Cohn, Further algebra and applications (Springer-Verlag, London, 2003). doi:10.1007/978-1-
4471-0039-3.

[5] P. Etingof, F. Latour and E. Rains, On central extensions of preprojective algebras, J. Algebra 313
(2007) 165–175. doi:10.1016/j.jalgebra.2006.11.040.

[6] S. Koshitani and T. Sakurai, On theorems of Brauer-Nesbitt and Brandt for characterizations of small
block algebras, preprint (2018) 9pp. arXiv:1803.00025v2.

[7] G. Navarro, Characters and blocks of finite groups (Cambridge University Press, Cambridge, 1998).
doi:10.1017/CBO9780511526015.

[8] T. Okuyama, Ext1(S, S) for a simple kG-module S (Japanese), in Proceedings of the Symposium
“Representations of Groups and Rings and Its Applications,” ed. S. Endo (1981), pp. 238–249.

[9] Y. Otokita, On diagonal entries of Cartan matrices of p-blocks, preprint (2016) 4pp.
arXiv:1605.07937v2.

[10] K. Shimizu, Further results on the structure of (co)ends in finite tensor categories, preprint (2018)
47pp. arXiv:1801.02493v2.

[11] C. A. Weibel, An introduction to homological algebra (Cambridge University Press, Cambridge,
1994). doi:10.1017/CBO9781139644136.

Center for Frontier Science
Chiba University
1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522 JAPAN

E-mail address: koshitan@math.s.chiba-u.ac.jp

Graduate School of Science
Chiba University
1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522 JAPAN

E-mail address: tsakurai@math.s.chiba-u.ac.jp


